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FACETS OF INTENSIONALITY 

 

Abstract: The goal of this paper is to introduce the reader to the distinction 

between intensional and extensional as a distinction between different 

approaches to meaning. We will argue that despite the common belief, 

intensional aspects of mathematical notions can be, and in fact have been 

successfully described in mathematics. One that is for us particularly interesting 

is the notion of deduction as depicted in general proof theory. Our considerations 

result in defending a) the importance of a rule-based semantical approach and b) 

the position according to which non-reductive and somewhat circular 

explanations play an essential role in describing intensionality in mathematics.  

Keywords: intensional logic, intensional definition, proof-theoretic semantics, 

proof theory, implicit definitions 

 

INTRODUCTION 

 

The demarcation between intensional and extensional is closely 

related to a distinction rooted in Frege’s philosophy of language. 

According to Frege, the meaning of a word or a linguistic segment has 

two components. When one is interested in questions such as What does 

P stand for, Which objects does P designate, Which objects does P refer 

to, one is asking about the reference (Bedeutung) of a linguistic 

expression P. But, when inquiring about the content that P expresses, 

about the rules or properties in virtue of which P picks out an object, one 
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is asking about the sense (Sinn) of P. In Frege’s philosophy of language 

sense and reference represent the two aspects of meaning.  

Given these two different aspects, one can accordingly 

distinguish two approaches in conceptual analysis or in any kind of 

semantical considerations. The first approach is centered on the reference 

of linguistic expressions, and it has long been dominant in logic, and in 

mathematics in general. Such an approach will be called extensional. 

According to the extensional approach, words behave like labels. Their 

meaning consists exclusively in signifying objects.
2
 On the other hand, an 

intensional approach takes into consideration the sense of linguistic 

expressions. Such an approach was mostly neglected in logic, modern 

mathematics and even, to a certain extent, in the philosophy of language. 

However, we will argue that despite the common belief, intensional 

aspects of mathematical notions can be, and in fact have been 

successfully described in mathematics. One of these notions is the notion 

of deduction depicted in general proof theory. The more general goal of 

this paper is to introduce the reader to the distinction between intensional 

and extensional as a distinction between different approaches to meaning 

especially in regards to notions in logic and mathematics.  

 

THE EXTENSIONAL REVOLUTION 

 

As already mentioned, in Frege’s philosophy meaning has two 

components: sense and reference. Distinguishing between sense and 

reference becomes significant when one realizes that the two do not 

always correlate. Some expressions have the same reference, but differ in 

sense, such as for instance, the morning star and the evening star. Even 

though both point to the same celestial object (the planet Venus), the 

criteria for something to be a morning star (the star that appears in the 

east before sunrise) are not the same as the criteria for something to be an 

evening star (the star that appears in the west after sunset). 

                                                           
2
 In his Philosophical investigations (Wittgenstein 1958, 2) ascribes this view to 

Saint Augustine based on (Augustine, Confessions I, ch. 8).  
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According to the account depicted by Frege, the identity of 

reference does not imply the identity of meaning. However, in the 

passages that follow we wish to present a different semantical 

perspective, one that has stood behind some of the main ideas in logic, 

mathematics, and set theory. This perspective is called the extensional 

approach.  

According to the extensional approach, all linguistic expressions 

possess a label-like behavior. Their meaning is reduced to the objects, or 

classes of objects they denote. In the semantics for classical logic not just 

individual constants, but predicates, propositions, as well as connectives 

are all understood as labels for different set-theoretic objects (individuals, 

sets, functions, etc.). Of course, these expressions differ syntactically, as 

they have different functions in building propositions. But from the 

perspective of semantics, their meaning is understood by the same model: 

a model of a label being attached to the labeled object.  

In the semantics of classical propositional logic the proposition is 

viewed as a label for a truth value. It can mean only two things – true or 

false. (The truth values are also understood in a set theoretic manner. The 

truth value false is an empty set while the value true is a singleton.) 

Accordingly, propositional connectives are, from the semantical 

standpoint, regarded as labels for truth functions. In the semantics of 

classical first-order calculus, n-ary predicates are interpreted by n-ary 

relations, and unary predicates are interpreted by subsets of a domain of 

discourse.  

While it can be argued that for some predicates the extensional 

approach is not so remote from our intuitive understanding (take for 

example the words for colors)
3
, for a vast majority of them this is 

evidently not the case. It is doubtful that one would so easily accept that 

the meaning of the predicate smart can be reduced to the set of people (or 

objects) that possess this property. When inquiring about the meaning of 

P one is usually not only interested in which concrete objects are P but 

                                                           
3
 According to the extensional picture, the predicate blue is interpreted as a set of 

blue things (on a specified domain). Even though the meaning of blue is 

intuitively associated with the specific impression, this impression can hardly be 

verbalized or explained without reference to the class of blue things. 



64 

 

ARHE XVII, 34/2020 

 

 

also in the rules or criteria by which we pick out P things from the ones 

which are not. 

The reason why the interpretation of predicates, and model-

theoretic semantics in general is extensional is primarily because the 

notion of set in mathematics is understood extensionally. The 

extensionality arises from the identity criteria for sets. In set theory, two 

sets are equal if and only if they have the same members. In other words, 

the equality of members is the necessary and the sufficient condition for 

the equality of sets. These identity criteria are postulated in ZF set theory 

by the axiom of extensionality. This axiom abstracts from a rule or a 

property in virtue of which one determines the membership in a set. 

Consider for instance the following two sets: the set of geometric images 

with three corners and the set of geometric images with three sides. 

Intuitively, the two sets are considered to be different based on set 

membership criteria. The expressions “having three corners” and “having 

three sides” represent distinct notions, they express different senses. 

However, under the extensional approach, one abstracts away from the 

intensional aspects of meaning. Since, every image with three sides will 

also have three corners, and vice versa, the two sets are regarded 

identical. 

Although Frege puts it somewhat differently
4
, using his 

terminology, one can specify the reference of a unary predicate to be a 

set, and its sense be a concept. To avoid paradoxes, one can instead speak 

of classes or specify in advance the domain of discourse, as it is done in 

the predicate calculus. In the classical model-theoretic semantic one 

forgets about concepts and considers only extensions – subsets of a 

domain. This is not to say that by taking such an approach one 

necessarily believes that there are no such things as concepts, and that 

there is nothing more (semantically) to a unary predicate then a set. It is 

just that concepts as well as the rest of the intensional baggage are seen as 

irrelevant for the analysis in question.  

                                                           
4
 For Frege, the extension of a predicate is a value range of the function that that 

predicate represents. See: (Frege 1891) 
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Just as the notion of set is extensionally defined, so is the notion 

of relation. According to our intuitive understanding, if a and b stand in a 

relation, then there should be a connection between a and b determined 

by a set of rules. But in mathematics, a binary relation between the sets 

A,B is defined as a subset of the Cartesian product of A and B – a set of 

ordered pairs (a,b), such that a is a member of A and b a member of B. 

Consequently, two relations between sets A and B are considered equal if 

they comprise the same set. The rules according to which ordered pairs 

are connected are considered insignificant. 

Extensionalizing is a way of abstracting – we abstract from the 

intensional components of meaning and focus on the ones that are related 

to naming – reference. Abstracting is a kind of rational forgetting. This 

rational forgetting has enabled precision, simplicity, rigor, and led to 

numerous desirable properties such as the completeness of classical 

propositional and predicate logic, truth-functionality of the connectives 

and functional completeness of some of them. 

An outstanding example of a successful extensional analysis in 

logic is the discovery of the material implication. Indeed, all the diversity 

and the richness of meaning tied to “if then” of ordinary language are not 

even remotely exhausted by the truth-functional account. They are 

abstracted from, forgotten. Simplicity and scarcity of this analysis, 

however, which stand opposed to opulence of natural language should not 

be considered as signs of failure, in contrast to what is generally believed 

in philosophy, but rather a sign of a very successful linguistic and 

philosophical analysis (Došen 2013, 26-27). Giving up the task of 

literally imitating natural language and taking a modest approach has in 

return resulted in numerous fruitful consequences, above all including 

simplicity and precision characteristic to logical rigor. Although the 

material implication does not capture the full meaning of if then of 

natural language, it captures nevertheless an essential one. 

The extensional approach to mathematics has not always been the 

dominant view. Until the second half of the 19
th
 century, the aim of 

mathematics was understood as having to do with calculation and 

problem solving. A great turn in a way of thinking about mathematics 

was caused by what Keith Devlin called the Göttingen Revolution. 
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(Devlin 2003) The revolution took place in Göttingen in the 1850s. One 

of the turning-points of the revolution was the transition to the 

extensional understanding of mathematical notions. Among these notions 

one is especially important and well known – the notion of function. 

Previously, a function was viewed as something closely connected to 

formulas of a specific kind, namely equations, such as: y = 2 + 3x – 5. A 

function was also conceived as a sort of a rule or a procedure for solving 

such an equation, a procedure that was supposed to take us from the 

numbers signified by a variable ‘x’ called ‘arguments’ to the numbers 

signified by ‘y’ called ‘values’. By extensionalizing the notion of 

function, the procedure itself became less important and all that mattered 

was the outcome of applying the rules – which values are assigned to 

which arguments. A function was thus reduced to a set of ordered pairs, 

the first projections of which were arguments, and the second projections 

were values, (arguments and values, of course, being from a specified 

domain and codomain respectively). That simplification turned out to be 

quite a convenient one. The concept of a function thus became a precisely 

defined, abstract mathematical concept – a set, whose properties (such as, 

for instance, the property of always giving different values for different 

arguments, that is, the property of being an injection) were objects of 

mathematical investigation.  

Extensionalising the notion of function implied extensionalising 

the identity criteria for functions. Two functions on the same domain and 

codomain are considered equal if they represented the same sets of 

ordered pairs. Even though, one may utilize different procedures, 

different rules in order to obtain the results of applying these functions.  

In (Frege 1891) Frege defines the notion of a value-range which 

is very similar to the extensional notion of a function as a set of ordered 

pairs. However, Frege does not identify the function with its value-range. 

For Frege a function is an unsatured entity that is defined primarily by its 

behavior – mapping arguments to values. The reference of functional 

expressions such as 2 + (0 × x), is not the function itself, according to 

Frege, but its value-range. So, the propositions such as “2 + (0 × x) = 2 + 

(x-x)” expresses the identity of value-ranges of the two functions, but not 

the identity of the functions themselves. Frege’s account appears not so 
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remote from the idea that the senses of these functional expressions could 

in fact be procedures or sequences of rules for calculating the values for 

the given arguments, though it is very doubtful that these were his own 

views. Regarding calculable functions, it is clear that the procedures 

ought to be effective. But in the case of the ones that are not, it is hard to 

imagine what these non-effective procedures would look like. Infinite 

procedures as the ones described by the infinite lambda terms (Berarducci 

& Dezani-Ciancaglini 1999) and infinite Turing machines (Hamkins &  

Lewis 1998) might be a good candidate though.  

According to the post-revolutionary conception of mathematics, 

mathematics is an investigation of conceptual reality – the reality of 

abstract mathematical objects (such as sets, functions, etc). The main aim 

of mathematical study is discovering truths about this conceptual world 

and the abstract objects existing therein. The post-revolutionary picture of 

mathematics is very much in the spirit of platonism and the extensional 

view is, if not inseparable of, than at least very closely related to it. 

However, in spite of the fact that many working mathematicians and 

philosophers of the 20
th
 century argued vigorously against platonism, and 

yet more still do, the extensional approach has been the dominant view in 

mathematics and logic due to its tremendous success, especially the 

success of set theory.  

Inspired by this success, one has turned more and more to 

extensional explanations not just in logic but also in the philosophy of 

language. An example is the theory of meaning proposed by Donald 

Davidson (Davidson 1967) which, inspired by classical model-theoretic 

semantics reduces the meaning of a proposition to its truth conditions. 

It seems that the extensionally oriented theories in the philosophy 

of language, were also motivated by a need to get around the issues of 

analyzing the intensional components of meaning. The biggest obstacle 

for an account of sense is to define clear and precise identity criteria for 

senses. (By identity criteria for senses we understand the necessary and 

sufficient conditions under which two expressions have the same sense.) 

There are in general three kinds of criteria for the sameness of 

sense of mathematical expressions. A) One can be a deflationist, and 

reduce the sense to reference (in the manner of set theory). This is what 
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the extensional approach does. B) On the other hand, one can define the 

equality of sense in terms of the identity of syntax. This view is not 

deflationary, but it is not particularly interesting either. The equality of 

senses is then rather trivialized and leaves very little to the investigation.
5
 

In addition, one can stipulate certain terms s,t as synonymous (as for 

instance, 1 and S(0)), and define synonymy in a standard inductive 

manner. Depending on the synonymy relation, the criteria for the 

sameness of sense can also end up to be rather trivial.
6
 

C) The third kind of sense identity criteria are such that the 

sameness of sense is defined through a non-trivial equivalence relation on 

the set of particular expressions, such that two expressions would stand in 

this relation if they have the same sense. In other words, one would 

define or characterize the sense of this class of expressions as an 

equivalence class. The non-triviality condition presumes non-reducibility 

to syntactical equality on one hand, and to reference, on the other. It also 

presumes that the equivalence relation thereby defined has some 

mathematical significance. The last condition is admittedly somewhat 

vague, but it should become clearer as we advance to the examples of 

such identity criteria for senses in the chapters that follow.  

Each of these options, A, B or C, is perfectly fine on its own. It is 

only appropriate however to call the third one intensional. In the 

following chapter as well as in the rest of this paper, we will direct our 

attention to analyzing the approach C and inspecting particular instances 

of it.  

 

  

                                                           
5
 A footnote in (Gödel 1944, 130) indicates that Gödel disregards the conception 

of sense identity criteria based on B above. He says that one needs weaker 

criteria that the ones based on pure syntax, thus suggesting that the sense should 

be beyond syntax, or differently put, that two mathematical expression that are 

differently built in terms of syntax can express one and the same sense.    
6
 This is the case, for example, if all the atomic clauses for synonymy are of the 

form s=t, where s is an atomic term, not having a prior meaning and introduced 

and defined on the basis of t for economic reasons (as for instance, 1 and S(0)). 
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INTENSIONALITY IN LOGIC 

 

Opposed to the dominant view in logic and mathematic in 

general, Gödel argued that the notion of sense can be precisely 

formulated and that the intensional approach in logic would bring 

considerable advantages.
7
 Although his ideas were only but scarcely 

developed, it is clear that his conception of intensional logic would be 

something close to set theory. In this logic, instead of sets, the main 

object of study would be concepts. According to Gödel, this theory 

should be type-free and the application of concepts to objects should 

differ from the set membership relation because it should be possible to 

apply a concept to itself in a manner that cannot be done with sets due to 

paradoxes.  

While Gödel’s work on intensionality consisted more in general 

guidelines, Church actively worked on developing a formal apparatus for 

talking about denotations of terms (references) and intensions which he 

calls concepts (senses) (Church 1951). His primary object of 

consideration was the relation between a thing and the concept of which 

that thing is an instance. Whereas Gödel believed that the intensional 

logic should remain type-free, Church centered his work on the simply 

typed lambda calculus. Church’s theory faced problems regarding 

consistency which lead to it being reformulated multiple times (Church, 

1973; 1974; 1993), never really providing a definite, finished formal 

system of an intensional logic.  

In this paper we do not intend to write about Church’s theory or 

Gödel’s ideas on intensionality in further detail nor about similar 

approaches. Because our objective here is not to investigate logic that 

makes senses in general the object of its study. The role of Gödel’s and 

Church’s endeavor for this work is mostly inspirational and heuristic. In 

what follows, our objective is to analyze the particular instances of the 

intensional approach in logic and mathematics and see how the 

                                                           
7
 Gödel’s comments on intensionality are reconstructed from his published 

works, (Wang 1996, 247-287) and his Nachlass published in (Crocco 2017). For 

a more detailed exposition, the reader is referred to (Kostić, in prep.)  
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intensional aspects of meaning of some particular notions, such as the 

notion of deduction can be captured mathematically.  

Moreover, one could make a distinction between our approach 

and the ones taken by Gödel and Church by saying that while our 

approach is intensional, their approach is meta-intensional. Common to 

the meta-intensional approaches of Church and Gödel is their goal to 

represent sense and the relation between sense and reference as central. 

However, an intensional approach we will argue for here does not 

necessarily presuppose the traditional definition of sense which rests on 

the distinction between sense and reference. The Fregean distinction is 

descriptivist. It is grounded in the supposition that the main language 

function is to describe the world around us. There the notion of reference 

is central, and the notion of sense is defined in terms of reference, as a set 

of rules or conditions for determining reference etc. In such a world 

imperatives, questions and other prescriptive functions of language are 

somewhat forgotten. (See: Maksimović 2016)  

Following the later Wittgenstein (Wittgenstein 1958) such an 

account can be challenged. According to this new broader view, a 

different notion of sense can be defined: a sense of a word (linguistic 

segment) P is grounded in the rules that determine the use of P. Notice 

that we are no more talking about the reference of P but just about the 

way it is used in a particular language setting. (Two expressions would 

then have the same sense if the same rules determine their use.) 

Such an approach to meaning is taken in proof theoretic 

semantics (PTS). (For an introduction on PTS see: Schroeder-Heister 

2012) In PTS logical connectives are not understood as labels for set-

theoretic entities but they are defined functionally – by the rules they 

obey in deduction. PTS is based upon natural deduction systems as the 

one in (Gentzen 1935), mainly for intuitionistic logic. In these systems, 

every logical connective comes with a pair of introduction and 

elimination rules. The introduction rules for an n-ary connective * 

express conditions in which one is allowed to infer the proposition 

*A1…An. For instance, the rule for introducing conjunction states that 

from the two premises A,B one infers A˄B. The rule for introducing 

disjunction states that one can infer the disjunction A˅B from either the 
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premise A alone or the premise B alone. Elimination rules for a 

connective *, on the other hand, prescribe what can be deduced from the 

proposition *A1…An. So, for instance, from A˄B one can infer A or 

alternatively, B. The disjunction case is somewhat more complicated but 

still rather intuitive. To eliminate A˅B one supposes A and B as 

independent hypotheses. If a common conclusion C is reached, from both 

A and B independently, the elimination can be finished and C inferred, 

while A and B are no longer considered as relevant and may be 

discharged. 

In PTS the connective is defined by the introduction and 

elimination rules for that connective. There is a tradition, stemming from 

Gentzen, of commonly regarding the introduction rules as so to say 

definitions of the connectives, whereas the elimination rules are seen as 

consequences of the introduction rules. A research suggest, however, that 

the psychological order of acquiring these rules is inverted (Kostić, 

Maksimović, Milošević, in prep.). This arguably favors the proposals that 

the elimination rules should be taken as primary. The idea of such an 

interpretation is first found in (Dummet 1991, ch.13) and developed in 

more detail in (Prawitz 1971) (see also: Schroeder-Heister 2015). 

Regardless, the relation between introduction and elimination 

rules is for PTS of great importance. In Gentzen’s sequent calculus it is 

mirrored in the symmetry between left and right introduction rules and 

the principle that governs it is in PTS called the principle of harmony 

(Schroeder-Heister 2012). An explanation of such a phenomenon is 

related to the fact that the (intuitionistic) logical connectives are 

characterized by adjunctions (See: Došen 2001). Consequently, their 

deductive behavior and their meaning can be described in terms of 

double-line rules in the framework of sequent calculus (Došen 1989) 

(Schroeder-Heister 2013). The expression “double-line” comes from the 

fact that these rules can be read in both ways, from top to bottom and 

from bottom to top.  

Interestingly, there is even some empirical evidence suggesting 

that a rule based interpretation of the logical connectives, as the one 

offered by PTS, is maybe more suited to how the meaning of these 
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connectives is acquired in real life (Kostić, Maksimović, Milošević, in 

prep.). But none of our considerations here depend on it.  

Before proof theoretic semantics, the first intensional 

breakthrough in logic was made by the intuitionists. The intuitionistic 

logic is most well-known for rejecting the law of the excluded middle (in 

this logic А˅¬А is not a theorem). This is commonly interpreted as the 

consequence of accepting constructivism. Constructivism is a position in 

the philosophy of mathematics according to which mathematical objects 

do not exist independently of the human mind (in the way physical object 

do, for example).
8
 They are just human constructions.

9
 If constructivism 

is to be accepted, the notion of truth in mathematics must be reformulated 

accordingly. The validity of the propositions about mathematical objects 

cannot consist in the correspondence with the platonic world of 

mathematics, since this world does not exist. Hence, it must consist in 

something that is related to how we come to accept these propositions 

and that is directly accessible to the human mind. The answer is – 

provability. According to this interpretation of intuitionism, asserting A 

should not be understood as A is true, but as A is provable.
10

 

By taking this point of view, one is bound to reject the law of the 

excluded middle. It cannot just be supposed a priori that every 

mathematical conjecture is either provable or that its negation is. 

Especially if negation is not taken as primitive but as defined by: A 

implies absurdity, which should be very natural for the intuitionist, since 

truth is reduced to provability. So, under the intuitionistic reading the law 

of the excluded middle should be understood as: either A is provable or 

from A one can deduce absurdity. And this is not something that can be a 

                                                           
8
 See more about constructivism and how it is connected to intuitionism in 

(Dummett 1978), especially: 50-66, 215-248. 
9
 This does not mean, however, that these constructions should be understood as 

subjective. Even though their metaphysical status is not entirely clear, it seems 

reasonable to suppose that their reality is on par with what Kant calls the 

intersubjective. 
10

 See more about different interpretations of intuitionistic logic in (Maksimović 

2016). 
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priori accepted for an arbitrary A. The axiom of choice AC
11

, for 

instance, is consistent with ZF (Zermelo-Fraenkel axiomatization of set 

theory), but its negation is also. Under the assumption that ZF is 

consistent, ZF does not prove AC or its negation.  

However, we will offer a different account of intuitionistic logic, 

one that is not necessarily connected to constructivism. Following (Došen 

1989), the difference between intuitionistic and classical logic can be 

based upon a different understanding of the logical implication. In 

classical logic, implication is material. It is defined truth-functionally by 

using negation and disjunction. Hence, the proposition if А, then В can 

simply be read as not A or B. As one might observe, offering the material 

conditional as an analysis of the if then of ordinary language represents 

quite a simplification. Evidently, through this simplification, we have lost 

some of the meaning including the connection between an antecedent and 

a consequent. It appears that in natural language this connection is mostly 

causal, like in If you drop a glass, it will break. In (Frege 1879, 13) Frege 

conjectured that such connections are not a part of the meaning of if then, 

but should be rather thought of as grounds for asserting the implication, 

which is a view close to Grice (Grice 1989). 

Admittedly, in logic and mathematics in general one is not at all 

concerned about causal connections between events. Deductive 

connections between propositions are, however, fundamental. In 

mathematics, the questions concerning if A then B cannot always be 

settled by simply finding out the truth values of A and B. More often, one 

is interested in how B can be deduced from the assumption A. In fact, 

deduction can be considered as an integral aspect of the meaning of if 

then in mathematics. This aspect of meaning, Došen argues, is the one 

intuitionistic implication is centered on. According to his account, the 

main difference between an intuitionist and a classical logician is that 

while in classical logic the implication is understood truth-functionally, 

the intuitionistic implication is based on deduction. For the intuitionist, if 

A then B literally means from the assumption A one can deduce B. 

                                                           
11

 The axiom of choice states that for every collection of non-empty sets, there is 

a set containing exactly one element from each of the sets from the collection.  
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Understanding implication intuitionisticaly results in the law of 

the excluded middle being rejected. In the natural deduction system for 

intuitionistic logic NJ (Gentzen 1935), the implication is characterized, 

just like all the other connectives, by a pair of rules: the introduction rule 

and the elimination rule. The introduction rule states that A → B can be 

inferred if from n occurences of the assumption A (n≥0), one can deduce 

B. If such a conclusion is achieved, A is no longer considered to be 

relevant and can be discharged. The elimination rule is just the modus 

ponens. These rules describe the deductive behavior of the intuitionistic 

implication. To obtain the classical conditional, and to progress from NJ 

to NK (the natural deduction system for classical propositional logic 

defined in: (Gentzen 1935)) one has to stipulate in addition the law of the 

excluded middle as an axiom, which cannot be derived in NJ. 

Equivalently, to NJ one can add the Pierce’s rule from which, together 

with NJ, the law of the excluded middle follows. Pierce’s rule allows one 

to infer A from the assumption A →B, and discharge the assumption, if 

one has deduced A from A →B. This rule cannot be justified on the basis 

of the introduction and elimination rules for the implication alone, and 

bears an additional assumption that the implication is material or truth-

functional. 

Why is intuitionistic understanding of the implication 

intensional? For two reasons. In classical logic, the meaning of the 

implication is reduced to a truth function. In intuitionistic logic, the 

meaning of the implication is given by the rules of deduction (modus 

ponens and the rule of implication introduction). According to this 

account, logical words do not obtain their meaning by labeling objects 

but their meaning is built upon the rules of their use. As we have already 

remarked, this is a semantical standpoint inspired by Wittgenstein and 

fully developed later in proof-theoretic semantics. 

There is yet another aspect in which intuitionistic implication 

made an intensional breakthrough. While classical (material) implication 

is related to the (semantic) consequence relation, intuitionistic 

implication is related to deduction. This distinction is very often ignored. 

A proposition A is a consequence of a collection of propositions in Γ if A 

is true when each of the propositions in Γ is true and this is written as Γ╞ 
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A. In other words, Γ╞ A holds iff for every valuation of the propositional 

letters in A and Γ, A is true or there is a proposition in Γ that is false. 

When Γ is a singleton containing only a proposition B, the consequence 

relation then amounts to the material implication, that is Γ╞ A iff for 

every valuation v, v(B→A)=1. In a more general case, when there is a 

finite number n of propositions in Γ, these propositions can be combined 

into an n-ary conjunction. But, the consequence relation again amounts to 

the relation between an antecedent and a consequence of the material 

implication; it is just that the antecedent is now a conjunction. (Došen 

1997, 291) 

The main difference between deduction and consequence relation 

is that there is only one way in which a proposition A is a (semantic) 

consequence of Γ, either Γ╞ A holds or it does not hold (Since the 

relation is understood extensionally, as a set of ordered pairs.) On the 

other hand, there can be multiple different ways in which A can be 

deduced from Γ. Consider the following example. Let Γ be a collection of 

propositions: C→A, B˄A, D, C. By using these propositions as 

hypothesis we can deduce A in two different ways. We can obtain A from 

B˄A, by using the second rule for conjunction elimination which gives us 

the second conjunct. On the other hand, A can also be obtained by using 

C→A and C as hypothesis and applying modus ponens. Obviously, two 

deductions are different because they have different premises. However, 

one can even differentiate between deductions with the same premises 

and the same conclusion. For instance, A can be deduced from ((C→A) ˄ 

C) ˄ A in two ways. The second rule for conjunction elimination directly 

obtains the result. But A can also be obtained by inferring the first 

conjunct C→A ˄ C, and then, after eliminating the conjunction twice, 

applying modus ponens. Thus, we have two ways of deriving A which 

represent two distinct deductions correspondingly. 

Deductions are not ordered pairs (of sets of premises and 

conclusions), they are ways of deriving a conclusion from the premises. 

When one realizes that, one understands deduction intensionally. This has 

not been the default approach to deductions, however. This is the 

approach taken in general proof theory. Proof theory is a branch of logic 

whose object of study are proofs. (In the rest of the text we will use the 
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terms proof and deduction interchangeably.) The main concern of general 

proof theory is to investigate proofs through proof identity criteria. 

Essentially, two kinds of identity criteria have been developed. The first 

one, which is far more well-known, stems from Prawitz and it is based on 

the notion of normal form. Intuitively, a proof in normal form is a proof 

without redundant steps. Inspired by (Gentzen 1935) who defined the 

notion of a normal proof in the sequent calculus, in (Prawitz 1965) 

Prawitz defines the procedure for reducing a natural deduction proof to its 

normal form. The idea is that by applying the procedure one does not 

change the proof essentially. So, the proposal is that two deductions are 

equal if and only if they normalize in the same manner, that is – their 

formal representations can be reduced to the same normal form. The 

second kind of identity criteria, first formulated by Lambek, are based on 

the notion of proof generality (see: Lambek 1972,65). Simply put, 

generalizing a proof amounts to understanding it in terms of instances of 

rule applications. According to this criteria, two proofs are said to be 

equal if and only if they are of the same generality – that is – if the 

generalization of the first one leads to the generalization of the second 

(for more details see: Došen & Petrić 2004).  

The idea common to both approaches to proof identity is to find 

mathematical representations of proofs and to define an equivalence 

relation on the representations such that a proof can be seen as an 

equivalence class of its representations (inside a given framework). All 

the representations that belong to the same equivalence class as a 

representation d are representations of the same proof as d. An inspiration 

for such an approach one owes to (Frege 1884, §64) where Frege defines 

the notion of a direction as an equivalence class of parallel lines. 

How are proof representations constructed? In general proof 

theory one uses the categorical framework.
12

 Proof representations are 

seen as arrows inside a category and proofs are understood as equivalence 

classes of their arrow representations. Two representations are considered 

equivalent – they represent the same proof if the appropriate arrows are 

                                                           
12

 For an introductory into category theory, the reader is recommended to consult 

(Mac Lane 1998) 
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equal in a suitable category. The categories suited for intuitionistic logic 

are bicartesian closed categories. Prawitz’s normalization criteria for the 

identity of proofs of intuitionistic logic exactly correspond to the equality 

of arrows in bicartesian closed categories. 

The proof identity criteria studied in general proof theory are 

intensional. They do not reduce proofs to consequence relations; they also 

do not reduce them to syntax, since these criteria yield equalities between 

distinct syntactical objects. And in addition, both kinds of criteria turn out 

to be mathematically interesting on their own. For instance, the 

normalization criteria form the mathematical structure of the bicartesian 

closed categories. All of the aforesaid points to the fact that the sense of 

the notion of proof is captured in general proof theory. It is not reducible 

to mere syntax, or to the consequence relation. It is something over and 

above it.  

So far, we have only discussed the identity criteria that are based 

on normal form, and haven’t said much about the ones that are based on 

generalization. Due to the aim and the volume of this exposition, we have 

to leave the discussion on generalization for elsewhere. It is noteworthy 

though, to mention that while the normalization criteria work quite well 

for intuitionistic proofs, the generalization criteria are more suited for 

classical proofs (See: Došen & Petrić 2004). 

Unlike set theory, category theory is more suitable to intensional 

characterizations, because arrows are not reduced to ordered pairs of 

sources and targets. For an arrow f: A → B, the source of f is the object A 

and the target is the object B. Different arrows represent different ways 

for getting from the source to the target. In a category, the operations on 

arrows are defined not in a standard set – theoretic manner, from the 

inside, but by the laws that govern the behavior of these operations, that 

is, from the outside. Let us try to explain this a little bit. Consider the 

notion of the Cartesian product. In set theory the Cartesian product is 

defined as a two-place operation on sets. The result of applying this 

operation, A × B is again a set whose members are ordered pairs (a,b), 

such that a is a member of A and b a member of B. We have thus 

characterized the Cartesian product from the inside, by enlisting its 

members.  
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In category theory, the notion of the Cartesian product is 

characterized from the outside, using the notion of categories with finite 

products or Cartesian categories. The chief idea of this kind of analysis 

is that one does not care what is inside A × B, we do not even know if A 

and B are sets. In general, they can be anything, they are just specified as 

objects. We characterize A × B so to speak, in terms of its behavior. (An 

idea of an outside characterization we owe to: Došen 2017). 

A Cartesian category is a category with binary products and a 

terminal object T (which stands for an empty product). Now, if a category 

has a (binary) product A × B, it comes equipped with special arrows: 

p
1

A,B: A × B → A, which represents the first projection, p
2

A,B: A × B → A 

which represents the second projection, and the operation on arrows 

called pairing, which from arrows f: C → A and g: C → B constructs an 

arrow <f,g>: C → A × B. The meaning of the (binary) product is 

characterized by the equalities that govern the behavior of the projections 

and the pairing. An example is p
1
A,B <f,g> = f (where  stands for the 

composition of arrows, which is defined as a partial associative binary 

operation on arrows)
13

. This equality states that applying the projection 

after the pairing is somewhat superficial, since it results in an arrow that 

is identical to f.  

Interestingly, the equality exactly corresponds to a proof equality 

of Prawitz, that is the result of a normalization. Imagine objects being 

propositions, the product being a conjunction, arrows being deductions, 

the first projection standing for the first rule of conjunction elimination, 

and the pairing as conjunction introduction. This equality states that every 

conjunction introduction followed by an elimination can be removed as a 

redundant proof step. 

The difference between inside and outside characterization is 

maybe easier to understand if compared to a distinction between direct 

and implicit definitions. The notion of implicit definition dates to Hilbert 

and Poincare. They realized that the axioms of Euclidean geometry can 

                                                           
13

 Every two arrows f, g can be composed into g f, provided that the source of g 

is the same as the target of f. In other words, if one has f: A→B and g: B→C, 

then one obtains g f: A→C.     
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be understood as definitions of notions appearing in them (Poincare 

1902) (Hilbert 1899). The idea of this kind of definition is to describe the 

meaning of a concept by stipulating some axioms that hold true of it, or 

to put it differently, that determine its use in deductions. An implicit 

definition deviates from the traditional, Arisotlenean one in various 

respects. Firstly, it does not have a standard form of a definition s=t, 

where s is the definiens and t the definiendum. Secondly it is non-

reductive, because a term is defined with regard to axioms that again 

must contain this term. 

Unlike set theoretical characterizations of notions, which are 

reductive, categorial characterizations may appear circular, just like 

implicit definitions. Category theory is sometimes held to represent 

alternative foundations for mathematics, but the truth is that category 

theory does not replace set theory. Category theory provides a good 

characterization or clarification of important mathematical notions, such 

as for instance the notion of the Cartesian product, the notion of function 

and many more. However, one cannot say that in the traditional sense of 

the word category theory defines the notion of function, since the very 

definition of a category presupposes the notion of function as given. (see: 

Došen 2017) In that manner categorial characterizations are more like 

implicit definitions. They are sometimes circular and not necessarily 

reductive. Yet, this shouldn’t be regarded as a bad thing. On the contrary. 

Just like the abstraction of the intensional (components) in set theory 

should not be thought of as a defect of an analysis, but as a useful tool, 

non-reductiveness should be looked upon as a purposeful feature of the 

framework that enables us to comprehend and describe intensionality. At 

the end of the day, maybe intensional explanations are just not meant to 

be reductive. 

 

CONCLUSION 

 

Characterizing notions from the outside, by studying the rules 

that govern their behavior, is a common feature of the intensional 

approaches we have here presented. Is maybe to some extent even a 

feature of this exposition (thereby making it slightly self-referential). In 
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proof theoretic semantics we do not define the meanings of the 

connectives by seeing them as labels for set-theoretic entities but we 

understand them functionally – by the rules they obey in deduction. We 

can call this approach a functional approach to meaning. A functional 

approach to meaning is what is common to general (categorial) proof 

theory, proof theoretic semantic, intuitionistic logic and we believe it is a 

very important aspect of the intensional approach in general. 

Granting rules a special connection to meaning is what is 

common to both the Wittgensteinean account of sense we have here 

proposed and Frege’s. By taking the extensional approach we conform to 

focus only on the results of applying these rules and to forget about the 

rules themselves. While there is nothing generally wrong with this 

position, why should one be prohibited to also investigate the rules in 

themselves and the structures formed by their application? We have tried 

to depict the intensional approaches presented here as successfully 

fulfilling this aim.  
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ASPEKTI INTENZIONALNOSTI 

 

Sažetak: Cilj rada je da čitaoca uvede u razliku između onoga intenzionalnog i 

onoga ekstenzionalnog kao distinkciju između različitih pristupa značenju. 

Tvrdićemo da, uprkos opštem uverenju, intenzionalni aspekat matematičkih 

pojmova može biti, pa i da zapravo jeste uspešno opisan u matematici. Jedan od 

onih koji su za nas naročito interesantni jeste pojam dedukcije onako kako je 

prikazan u opštoj teoriji dokaza. Naša razmatranja za rezultat imaju odbranu a) 

važnosti semantičkog pristupa zasnovanog na pravilima i b) pozicija prema 

kojima neredukcionistička i donekle cirkularna objašnjenja igraju suštinsku 

ulogu u opisivanju intenzionalnosti u matematici. 

Ključne reči: intenzionalna logika, intenzionalna definicija, dokazno-teorijska 

semantika, teorija dokaza, implicitna definicija  
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