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Abstract: Martin Gardner's two-children paradox posits two scenarios, in one 

we know that of two children one is a girl, and in the other we know that of two 

children the older one is a girl. The chances of the other child being a girl is not 

the same in these two scenarios, in the first being 1 in 3 while in the second they 

are 1 in 2. Gardner himself believed that the problem of this paradox lies in the 

ambiguous way the scenarios are articulated. However, it is possible to show that 

the original version of the paradox provides sufficient content for a meaningful 

explanation of these unexpected results. Inspired by comments by Leonard 

Mlodinow, we attempt to provide a comprehensible explanation for this 

counterintuitive change with help of Bertrand Russell's theory of descriptions. 

The difference between the two scenarios then boils down to the difference 

between indefinite and definite descriptions. 

Keywords: definite description, indefinite description, naming, probability, two-

child paradox 

 

 Few things are as difficult for our brains to intuitively grasp than 

the various aspects of probability. Even a mundane occurrence such as 

rain may seem confusing when the weather forecast announces that 

tomorrow's chance of precipitation is, say, 25%. If we are to spend the 

majority of the following day out of doors, is it recommended to 

definitely bring an umbrella for the expected six hours of rainfall, or does 

this mean that we have 3 in 4 chances of avoiding a downpour altogether, 
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making the prospect of leaving without an umbrella a reasonable risk to 

take? 

 Nowhere is the difficulty of comprehending probability more 

evident than in games of chance. Entire chains of casinos are built on 

people's tendency to overestimate the chances of winning and 

underestimate the likelihood of losing. There is a vast array of 

psychological traps used to ensnare players with the near-miss effect and 

sunk cost fallacy. Of course, we would be remiss not to mention the well-

known gambler's fallacy, which so often reminds us that a coin doesn't 

remember: even after ten consecutive heads, when a tails would seem 

long overdue, the probability is still 50:50. 

 These issues are not exclusive to gambling, for in any case where 

there is an uncertain outcome, chances are people will find a way to argue 

over probabilities. A rather amusing example can be found in Magic: the 

Gathering card game, where some players of mono-coloured decks 

sometimes include fetchlands in their mana base solely for the purposes 

of deck thinning. While the fetchlands undoubtedly thin the deck, is the 

miniscule effect worth the cost of a single life point (to say nothing of the 

cost on one's wallet)? 

 However, all of the pitfalls we have mentioned so far are 

psychological problems of intuitively grasping probability. It should 

really come as no surprise that the way we "feel" probability should work 

isn't necessarily the way the world functions. Drawing that fourth land 

from the library in a row may feel unfair and we may be tempted to cut 

some lands from the deck, but it might also just be par for the deck's 

variance. Surely, the best remedy for that is an unbiased and rigorous 

mathematical analysis of the situation in question, as no person of sound 

mind would dare argue against cold and definitive numbers. 

 And yet, challenges with understanding probability are not just 

false first impressions that are easily sorted out with rigorous methods. 

Sometimes the very formal mathematical treatment of probability seems 

questionable or counter-intuitive. These situations are sometimes called 

"paradoxes", even though they are not paradoxes in the strict sense of the 

word, but more often than not they are ambiguously worded problems 

that can have diverging interpretations. Arguably the most interesting of 
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these and perhaps the one which best demonstrates the shortcomings of 

our probabilistic intuitions is Martin Gardner's "The Two Children 

Problem", also known as "Boy or Girl Paradox". 

 This is a two-part problem that can be found in Gardner's The 

Second Book of Mathematical Puzzles and Diversions. The first part goes 

as follows: "Mr. Smith had two children. At least one of them is a boy. 

What is the probability that both children are boys?"
2
 Assuming the equal 

likelihood of two outcomes (a boy and a girl), the intuitive answer would 

be 50:50, or 1 in 2 chances, as the genders of the two children are 

independent events of equal probability. This, however, is not the correct 

answer, which becomes evident after we consider the sample space of all 

possible cases: 1) a boy and a boy; 2) a boy and a girl; 3) a girl and a boy; 

4) a girl and a girl. Given that one child is a boy, this eliminates the 

fourth case and we are left with three possibilities, of which only one (the 

first one) corresponds to the question posed, thereby making the chances 

for there being two boys only 1 in 3. 

 So far, so good, it would seem that this is just another case where 

our intuitions have led us astray. But the real conundrum appears with the 

second part of the problem, which goes: "Mr. Jones has two children. The 

older child is a girl. What is the probability that both children are girls?"
3
 

All the same assumptions still apply. As a matter of fact, other than the 

gender in question being reversed (asking about girls instead of boys) and 

the added information about the older child, this question seems identical 

to the previous one. It is inconceivable that the age of one child would 

have any bearing on the gender of the other, thus the answer would surely 

have to be the same as before, namely, 1 in 3 chances. Yet, it is not. 

Again, considering the same sample space and positing that the sequence 

of entities corresponds to the order of their birth, of the four possibilities, 

numbers one and two are eliminated (as the older child in them is a boy), 

leaving us with only two cases where the older child is a girl, of which 

only one contains two girls, thereby making the probability 1 in 2. 

                                                           
2
 Martin Gardner, The Second Scientific American Book of Mathematical Puzzles 

& Diversions, The University of Chicago Press, Chicago, 1987, p. 152. 
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 The "paradox" here isn't so much that our intuitions deceived us 

over and over, but rather that the two seemingly identical questions have 

such diverging answers. We can even go so far as to amend the varying 

genders in the questions so that this discrepancy becomes even more 

evident: 

P1.1: Of two children, one is a girl. What are the chances that the other is 

a girl? (1 in 3) 

P1.2: Of two children, the older one is a girl. What are the chances that 

the other is a girl? (1 in 2) 

How can the addition of the seemingly inconsequential information in 

italics so drastically affect the answers? 

 Gardner claimed that the issue is due to "ambiguity arising from 

a failure to specify the randomizing procedure."
4
 In other words, the issue 

would disappear if the problems were posed in a different manner, 

perhaps by not talking about a couple of families in a vacuum, but rather 

by specifying that we are randomly sampling from a pool of families with 

two children of specified characteristics. However, even this forced 

frequentist interpretation only helps with quelling the disputes about 

calculation methods. It still fails to explain how a simple stipulation of 

relative age causes the change. 

 A clue towards the answer can be gleaned from the variation of 

the problem put forth by mathematician Leonard Mlodinow in his book 

The Drunkard's Walk. This version sets out in a familiar way, but 

deviates from the original soon enough:  

P2.1: In a family with two children, if one of the children is a girl, what 

are the chances that the other one is a girl, too? (1 in 3) 

P2.2: In a family with two children, if we learn that one of the children is 

a girl with an unusual name (for instance, Florida), what are the chances 

that the other child is a girl, too? (1 in 2)
5
 

 Mlodinow's take on the problem is markedly different from 

Gardner's. The second question now doesn't restrict the sample space by 

                                                           
4
 Ibidem, p. 226. 

5
 Slightly adapted from Leonard Mlodinow, The Drunkard's Walk, Pantheon 

Books, New York, 2008. 



GARDNER'S PARADOX AND THEORY OF DESCRIPTIONS 51 

 

 

 

putting children into ordered pairs. Yet the curious transformation of 

probability between questions persists. Mlodinow claims that the change 

from P2.1 to P2.2 demonstrates that the knowledge of a name is de facto 

added information that ought to change how we understand the entire 

setup. Effectively, Mlodinow implies a Bayesian interpretation of the 

problem, where the posterior is different from the prior after evidence is 

introduced. This is parallel to the well-known Monty Hall problem, 

where opening a door with a goat imparts new information about the 

system and prompts the contestant to switch doors in hopes of winning an 

automobile over the other goat. 

 However, this "new information" explanation still fails to 

address the issue why an information about the name (or relative age, for 

that matter) would have any bearing on the probability of gender. One 

way of dealing with this is to note that any additional information that 

doesn't provide evidence against the case of two girls inherently raises 

the probability of that case.
6
 But this merely takes Gardner's paradox and 

turns it into Hempel's paradox. Furthermore, there are serious disputes 

whether Mlodinow actually uses a Bayesian approach, or if his version of 

the problem is just a different way of restricting the sample space as in 

Gardner's version.
7
 

 Perhaps there is a less contentious way to resolve this problem, 

perhaps we can use the fact that Gardner's and Mlodinow's versions of the 

problem are different, while still ending up with the same solutions. In 

both cases the first question refers to a nondescript child, while the 

second question singles out one child, Gardner by age and Mlodinow by 

name. Is there a frame of reference where an attribute and a name 

intertwine? Or, in the words of the infatuated Juliet – what's in a name, 

anyway? 

 Mlodinow's inkling that the difference stems from having a 

named versus unnamed child is is reminiscent of how first-order logic 

differentiates between individual constants and variables. Perhaps first-

                                                           
6
 Keith Parramore and Joan Stephens, "Two girls – the value of information" in: 

The Mathematical Gazette, Vol. 98, No. 542, 2014, p. 244. 
7
 Stephen Marks and Gary Smith, "The Two-Child Paradox Reborn?" in: 

Chance, Vol. 24, No. 1, 2011, p. 58. 
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order logic might just help us disentangle this conundrum. If we can find 

a way to express the various versions of the paradox in the language of 

first-order logic and then find a suitable model for each version, we just 

might shed some light on the underlying mechanism that effects the 

change in probability calculations between the two questions. We need to 

be careful, however, as not every phrase that constitutes Gardner's 

paradox should be considered a part of the formal theory; some supply 

the information needed to create a model for that theory. Therefore, our 

analysis of each variation must always begin with sorting these elements 

apart. 

 Since this undertaking was inspired by Mlodinow's version of 

the problem, let us begin by taking a look at P2.1 and P2.2. For starters, 

the common initial assumption that there are two children in question can 

be considered a declaration of the universe of discourse: we can even 

give appropriate names to these children, say Addison and Billie. 

Individual constants associated with them can be a and b, respectively. 

The only predicate that is used is "is a girl", which can be formalised as 

G. Even though we assume the possibility that a child can be a girl or a 

boy, we do not require a separate predicate for "is a boy"; due to the 

simplistic assumption that a child can be either a girl or a boy, "is a boy" 

is the same as "is not a girl", so ¬G will suffice. We now posses the basic 

elements for interpretation according to which we will seek models for 

the theory we are yet to establish. The phrase that asks about the chances 

of two girls is merely a stipulation that instruct us to count the number of 

models that contain no ¬G (no non-girls, that is two girls) against the 

total number of models. 

 All that remains from the initial questions are now phrases that 

talk about which child is a girl. We will now adapt these phrases into 

what we shall call core propositions of the problem, and these will then 

be translated into first-order logic. These are: 

 

P3.1: There exists at least one girl. 

P3.2: Addison is a girl. 
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The P3.1 proposition is a simple existential statement that does not refer 

to any entity in particular, and is thus best translated into a formula that 

uses a variable bound by an existential quantifier: 

 

ƎxGx (F1) 

 

Interpreting this proposition in the given universe, the following 

combinations are consistent with it: Ga^Gb, Ga^¬Gb, ¬Ga^Gb. The only 

interpretation that would contradict the proposition F1 is ¬Ga^¬Gb , as 

there would be no entity left that could satisfy the existential statement. 

Of the three models, only one of them contains no negations (no non-

girls, i.e. boys). Assuming that all possible combinations are equally 

likely, this gives us the expected probability of two girls as 1 in 3. 

 The P3.2 proposition refers to a specific entity, Addison, so the 

formula must use an individual constant as its argument, and no 

quantifier will be necessary: 

 

Ga (F2) 

 

The only two combinations that are consistent with this proposition are 

Ga^Gb and Ga^¬Gb, as any combination that includes ¬Ga directly 

contradicts it. Of the two models, only one contains no non-girls. Ergo, 

the expected probability of two girls is in this case 1 in 2. 

 Let us now turn to Gardner's version of the problem as given in 

P1.1 and P1.2. Again, we have the declaration of the universe of 

discourse, and we can again use Addison and Billie here. The "is a girl" 

predicate G makes another appearance, with all the specifics regarding 

¬G and boys. However, we also find a new predicate, "is older", which is 

a contraction of "is older than". This is a binary asymmetric relation that 

can be represented with O such that Oxy means "x is older than y". 

Stipulations for counting models are the same. We are now left with 

Gardner's core propositions, which are: 

 

P4.1: There exists at least one girl. 
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P4.2: There exists at least one entity that is older than the other and is a 

girl. 

 

 The P4.1 proposition is identical to P3.1, so the formula F1 will 

perfectly apply to it, along with the conclusion of the 1 in 3 probability of 

both entities being girls. 

 The issue now arises with proposition P4.2, and there are two 

ways we can deal with it. We can take it at face value, in which case the 

corresponding formal expression is: 

 

ƎxƎy(Oxy^Gx)  (F3) 

 

We can now examine how individual children can slot into this statement. 

Consistent interpretations include Oab^Ga^Gb, Oab^Ga^¬Gb, 

Oba^Gb^Ga and Oba^Gb^¬Ga, two of which contain no non-girls, 

giving us the chances of 1 in 2. 

 The second way we can address the P4.2 proposition is to force 

an absolute meaning of the words "is older than" so that we can avoid the 

use of O relation. This is feasible, for instance, by tacitly assuming that 

Addison's and Billie's parents name their children in alphabetical order. 

With this assumption, the age attribute becomes an inherent characteristic 

of a child's name, effectively turning that property into an equivalent of a 

name. The older entity is, by this assumption, Addison, and singling out 

the older entity is the same as singling out Addison. In this case, the P4.2 

proposition is equivalent to the P3.2 version, therefore, the F2 formula 

would apply, along with the 1 in 2 chances of both entities being girls. 

 So far, our results seem to be mixed. On the one hand, the use of 

variables versus the use of individual constants perfectly mimic the 

results of Mlodinow's version of the problem. On the other hand, 

Gardner's version is not as clean-cut. When dealing with the P4.2 core 

proposition, we had to use either a binary predicate or the assumption of 

alphabetical naming, both of which are elements that do not exist in 

Mlodinow's version. These novel elements interfere with our conclusions 

insofar as we cannot be sure if the probabilistic change arises due to the 

use of individual names versus general descriptions, or due to these 
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confounding novel elements. It would seem that we need to add another 

layer to our investigation that will account for the relationship between 

names and individual properties. Fortunately for us, this has long been a 

point of interest for philosophy of language, and we have ample theories 

to choose from. 

 Bertrand Russell's theory of descriptions is arguably most fitting 

for the circumstances of the problem we are facing. This theory attempts 

to provide a reliable framework for understanding how various kinds of 

descriptive expressions of language refer to objects of reality, especially 

regarding issues such as expressions that do not refer to anything or 

multiple expressions that refer to one and the same object. The most 

significant point of interest for us is the fact that this theory includes a 

comparison of how names and descriptions function. At the very 

beginning of Russell's seminal text On Denoting, we can find a list of 

three kinds of denoting phrases: 

 

"(1) A phrase may be denoting, and yet not denote anything; e. g. 'the 

present King of France'. 

(2) A phrase may denote one definite object; e. g. 'the present King of 

England'. 

(3) A phrase may denote ambiguously; e. g. 'a man' denotes not many 

men, but an ambiguous man."
8
 

 

 The second kind is what Russell called definite descriptions, and 

he believed that it encompasses not only phrases that refer to a singular 

entity, but also proper names, which can be seen as shorthands for some 

more complicated phrases. The third kind of denoting phrases are called 

indefinite descriptions. When analysed in first-order logic, definite and 

indefinite descriptions show syntactic differences. 

 If we look back at the core propositions of Gardner's paradox, 

we can see that they neatly fall into these two categories: P1.1 contains an 

                                                           
8
 Bertrand Russell, "On Denoting" in: Mind, Vol. 14, No. 56, 1905, p. 479. It 

should be noted that Russell wrote this text during the reign of Edward VII, 

when England indeed had a King. 
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indefinite description ("one [child]", which is, effectively, the same as "a 

child"), while P1.2 contains a definite description ("the older child"). This 

remains stable for all the different versions of these core propositions that 

we used so far ("one child" and "one entity" are indefinite, while 

"Florida", "Addison" and "the older entity" are definite descriptions). 

 Russell posits that indefinite and definite descriptions have 

different symbolic forms. For instance, the phrase "I met a man" 

effectively means "there is an x such that I met x and x is human." 

Therefore, indefinite descriptions have the form Ǝx(Px^Rx). On the other 

hand, the phrase "The father of Charles II was executed" effectively 

means "There is an x such that x begat Charles II, and for every y if y 

begat Charles then y is x, and x was executed." Therefore, definite 

descriptions have the form Ǝx(Px^∀y(Py→y=x)^Rx). Let us now try to 

apply these forms to statements of Gardner's paradox. 

 We begin with all the same assumptions as before. The universe 

of discourse encompasses Addison and Billie, a and b, we will use G for 

"is a girl" and add C for "is a child". This time, however, instead of using 

the binary relation O for "is older than", we will regard the P1.2 

proposition as if it contains a simple description "is the older child". To 

that end, we will represent it with the unary predicate S which carries a 

simple caveat: in a universe of only two entities, only one may carry the 

"is older" description, therefore ∀x∀y(Sx→¬Sy). Per Russell's suggestion, 

the remaining core propositions are paraphrased as follows: 

P5.1: There is an x such that x is a child and x is a girl. 

P5.2: There is an x such that x is the older child, and for every y if y is the 

older child then y is x, and x is a girl. 

 The P5.1 proposition then has the form: 

 

Ǝx(Cx^Gx) (F4) 

 

Since the other child (y) can either be a girl or not be a girl, we can 

conjoin each of these possibilities with the previous proposition, like so: 

 

Ǝx(Cx^Gx)^Ǝy(Cy^Gy) 

Ǝx(Cx^Gx)^Ǝy(Cy^¬Gy) 

(F5) 

(F6) 
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Since the two variables x and y can either be Addison (a) or Billie (b) in 

this universe, we need to examine every combination of constants. The 

formula F5 can be interpreted either as (Ca^Ga)^(Cb^Gb) or as 

(Cb^Gb)^(Ca^Ga), but these two options are completely equivalent, so 

formula F5 has only one model. Formula F6 is slightly different, as it can 

be interpreted either as (Ca^Ga)^(Cb^¬Gb) or as (Cb^Gb)^(Ca^¬Ga), 

which are two different models. Therefore, we have three distinct models, 

only one of which contains no ¬G (that is, two girls), so the probability of 

two girls is again confirmed as 1 in 3 chances. 

 The P5.2 proposition is slightly more complex. It begins with the 

form: 

 

Ǝx(Sx^∀y(Sy→y=x)^Gx) (F7) 

 

If we now wish to expand it with the account of the other child (y), we 

must remember that predicate "is the older child" cannot be true for both 

entities, that is ∀x∀y(Sx→¬Sy). Therefore, the expanded conjunction can 

only have these forms: 

 

Ǝx(Sx^∀y(Sy→y=x)^Gx)^Ǝy(¬Sy^∀x(¬Sx→x=y)^Gy) 

Ǝx(Sx^∀y(Sy→y=x)^Gx)^Ǝy(¬Sy^∀x(¬Sx→x=y)^¬Gy) 

(F8) 

(F9) 

 

Furthermore, since Sy and ¬Sx are necessarily false, both expressions 

∀y(Sy→y=x) and ∀x(¬Sx→x=y) are necessarily true, so we can eliminate 

them in order to simplify the formulas into: 

 

Ǝx(Sx^Gx)^Ǝy(¬Sy^Gy)  

Ǝx(Sx^Gx)^Ǝy(¬Sy^¬Gy) 

(F10) 

(F11) 

 

These can now have the following interpretations. Formula F10 can lead 

either to (Sa^Ga)^(¬Sb^Gb) or to (Sb^Gb)^(¬Sa^Ga), while formula F11 

can lead either to (Sa^Ga)^(¬Sb^¬Gb) or to (Sb^Gb)^(¬Sa^¬Ga). Of 

these four models, only the two that interpret the F10 formula do not 

contain ¬G (that is, they contain two girls), so the probability of two girls 

is again confirmed as 1 in 2 chances. 
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 We can now finally pinpoint the origin of the probabilistic 

difference between the two questions of Gardner's paradox. The question 

that stipulates that a child is of a specific gender contains an indefinite 

description, but the question that stipulates that the older child is of a 

specific gender contains a definite description. Syntax of the definite 

description gives four possible interpretations, two of which satisfy the 

conditions of the question. However, syntax of an indefinite description 

results in two of the four interpretations being equivalent, and these just 

so happen to be the two that satisfy the condition of the question, thereby 

changing the way probability is calculated. 

 An astute reader may reprimand us for not addressing the role of 

the ∀x∀y(Sx→¬Sy) assumption. Is this assumption not a novel element in 

the analysis and thus another possible culprit of the change of 

probability? To that we would answer that this is indeed true, however, 

this assumption does nothing else but establish the uniqueness of the "is 

the older child" description in a two-entity universe of discourse. In other 

words, the definite description found in P5.2 is facilitated by this very 

assumption. Therefore, pointing at this assumption as a possible culprit is 

just a roundabout way of pointing again at the distinction between 

indefinite and definite descriptions. 

 Even though Russell's theory of descriptions was created with 

more profound philosophical issues in mind, it is still pleasing to see how 

it can be used to shed light on the unusual case of Gardner's paradox. If 

anything, we can now say that we have conclusive proof that this issue of 

probability is not a paradox, but a curious case that challenges our 

superficial intuitions. The possibility of establishing a clear separation of 

the two questions on the account of indefinite and definite descriptions 

used in them effectively shows that Gardner's own remark on the 

ambiguous nature of the problem was in a sense dispensable, as the 

problem can be made transparent as is. Of course, it is almost trivially 

true that every problem can be made more accessible if articulated in a 

more exhaustive manner. 

 Ultimately, there are two additional benefits to uncovering the 

mechanism underlying the Gardner's paradox. Firstly, it offers a clear 

rebuttal to any claim that Gardner's paradox is fallacious or that Gardner 
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made a mistake while reasoning about it.
9
 Secondly, providing a reason 

for an otherwise counterintuitive situation is fundamentally satisfying. It 

is why paradoxes, puzzles and enigmas are so interesting in the first 

place. When facing a situation that defies our expectations, instead of 

passively hoping that we will simply get used to it as some kind of "new 

normal", it is always far better to put in the effort to see what the case 

really is in order to better manage our expectations in the future. The 

former approach is complacency, the latter is curiosity. 
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Sažetak: Paradoks dvoje dece Martina Gardnera postavlja dva scenarija, jedan u 

kom znamo da je jedno od dvoje dece devojčica i drugi u kom znamo da je 

starije od dvoje dece devojčica. Šanse da je i drugo dete devojčica nisu iste u ova 

dva scenarija, u prvom iznose 1 od 3, a u drugom 1 od 2. Sam Gardner je 

smatrao da je problem ovog paradoksa u nejasnoj artikulaciji same postavke, 

međutim, moguće je pokazati da i prvobitna verzija paradoksa pruža dovoljno 

sadržaja za smisleno objašnjenje porekla ovih neočekivanih rezultata. Inspirisani 

zapažanjima Leonarda Mlodinova [Leonard Mlodinow], pokušavamo da 

pronađemo suvislo objašnjenje ove kontraintuitivne promene pomoću teorije 

deskripcija Bertranda Rasela. U tom pogledu, razlika između ova dva scenarija 

se svodi na razliku između neodređenih i određenih deskripcija. 

Ključne reči: imenovanje, neodređena deskripcija, određena deskripcija, 

paradoks dvoje dece, verovatnoća 
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