Main Article Content



 In this paper, the authors examined by the means of a dialogue the very current question of speculative confluence of philosophy and mathematics. In this collegial discourse, they start off from a methodological position that states that polyformism is an inevitable principle based on the dialectical law of negation, which is present in the science of philosophy since the time of Aristotle. The key essential question of this scientific and philosophical phenomenon is in its permanent insistence upon integral examination of various approaches of hermeneutic understanding and reasoning of notions, especially while studying scientific, educational or philosophical phenomena. By studying and exploring the possibility of applying this principle, the authors arrived at the following conclusion: if it is undisputed that evidence (presenting by the means of trivial proof by laws of logic) is a principle, and permanence (maintaining formal order) founded on evident proof is also a principle, then every finite chain of conjunctions of evident scientific, methodic, philosophical proofs, or a multiple conjunction thereof, itself a scientific, methodic or philosophical principle.

Article Details

How to Cite
KRCIĆ, ŠEFKET, & MARKOVIĆ, ĐOGO G. (2015). POLYFORMISM AS THE TEACHING, SCIENTIFIC AND PHILOSOPHICAL PRINCIPLE. Arhe, 11(22), 159–171. https://doi.org/10.19090/arhe.2014.22.159-171


Arnhajm, R., Vizuelno mišljenje (jedinstvo slike i pojma), Univerzitet umetnosti, Beograd, 1985.

Bertolino, M., Matematika i dijalektika, Zavod za udžbenike i nastavna sredstva, Beograd,1974.

Krkljuš, S., Didaktički disput ( priredila: Mara Đukić) Novi Sad, 1998.

Marjanović, M., Metodika matematike - I deo, Učiteljski fakultet, Beograd, 1996.

Marković, Đ. G., An approach to art through polyforms, Aademic thought, u: Journal of science, culture and art, Vol. 11, 2012, International University of Novi Pazar, indexing in Central and Eastern European Oniline Library

Marković, Đ. G., magistarski rad: Geometrija u funkciji razbijanja formalizma u nastavi matematike, PMF Novi Sad, 2007.

Marković, Đ. G., Geometrijski poliformizam, „3M Makarije“, Podgorica, 2006.

Marković, Đ. G., Novi pogledi na metodiku nastave matematike, 3 M Makarije, Podgorica 2008.

Marković, Đ. G., doktorska disertacija: Novi pogledi na metodiku nastave matematike u svijetlu didaktičkog principa poliformnosti, PMF Novi Sad, 2007.

Stipanić, E., Matematika i marksističko obrazovanje, Zavod za udžbenike i nastavna sredstva, Beograd, 1974.

Šarigin, I. F., Da li je geometrija potrebna školi 21. vijeka?, Математическое просвешение, (Третb сери) Издателbство МЦНИО, Москва, 2004.

Vigotski, L., Mišljenje i govor, Nolit, Beograd, 1983.